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ABSTRACT 

A numerical study is made of the equilibrium properties and thermal conductivity of 
one-dimensional lattices with various degrees of anharmonicity and coupling defects. 
The equilibrium energy flux autocorrelation function is determined, and its relationship 
to the coefficient of thermal conductivity is discussed. The coefficients of thermal 
conductivity, together with other nonequilibrium properties, are determined for several 
applied temperature gradients and lattice conditions. 

1. INTRODUCTION 

Despite the numerous studies of lattice thermal conductivity since the classic 
investigation of Peierls [l], there remains a number of unresolved conceptual and 
analytic problems [2], 131. The theoretical clarification of these problems is impeded 
in the case of real solids by effects resulting from complicated interatomic forces, 
lattice structures, impurities, defects, and quantum effects-all of which are largely 
secondary to many of the conceptual difficulties, and even to many of the analytic 
problems. The purpose of the present study is to report on numerical calculations 
of the thermal conductivity and equilibrium fluctuations for some simple one- 
dimensional lattices which have a minimum number of complicating factors. Thus 
our present objective is not to reproduce results which can be better obtained from 

1 Present address: Hydrospace Research Corporation, Roclcville, Maryland. 
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real experiments on real solids, but to obtain information about systems which are 
simple enough for future detailed theoretical analysis. It is hoped that by simpli- 
fying the system, and obtaining detailed information, which is impossible to obtain 
by physical experiments, the present results will aid in clarifying some of the con- 
ceptual aspects of lattice thermal conductivity and act as a detailed check of the 
standard analytic approximations that are used in the case of real solids. It should 
be made clear, however, that the degree to which studies of the present type can 
aid in clarifying theoretical questions is rather limited. The theoretical idealization 
of infinite lattices can only be roughly approximated by numerical calculations, 
which are at present limited to rather small lattices (100-1000 particles) due to 
computation time. While this size limitation does not appear to have any significant 
effect on the intensive nature of the coefficient of thermal conductivity, it does have 
a profound effect on the behavior of the energy flux autocorrelation function. 
Because of this, it is very difficult, if not impossible, to check the very interesting 
and important theoretical relationships arising from fluctuation-dissipation 
theories. On the other hand, the very occurrence of these difficulties indicates certain 
limitations resulting from idealizations in the standard fluctuation-dissipation 
theories. 

The model lattice and reservoir used in the present calculations are described 
in the following section. Some aspects of the computations are discussed in Section 
3. In Section 4 a number of equilibrium properties of this model are reported, 
including the behavior of the energy flux autocorrelation function. Section 5 
contains the results of nonequilibrium situations involving various applied 
temperature gradients and anharmonicities. 

2. THE LATTICE AND RESERVOIR MODEL 

The system which is studied is a linear monatomic lattice2 with the Hamiltonian 

where qi is the location of the ith particle, and I, is the equilibrium separation 
distance. Introducing the dimensionless time t(p/m)lla, displacements from 

* A recent numerical study of lattice thermal conductivity, which investigates the effects arising 
from a disordered anharmonic lattice, has been made by Payton, Rich, and Visscher [4]. 
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equilibrium xi = (qi/lo) - (i - l), and anharmonic coefficients hi = x,l,,/t~, 
K~ = &lo2/~, the dimensionless Hamiltonian, H = fi/t~l,,~, is 

H = 2 ; $$ + Ngl 1; (xi+1 - xi)’ - f &(X,+l - Xi)3 + ; K&+I - x,)“l (2) 
i=l i=l 

Typically, the values N = 100, hi = 10, and K{ N 67 were used in the calculations. 
The relationship between these nondimensional units and typical physical lattices 
is discussed in Appendix A. While the present lattice is monatomic, it can exhibit 
many of effects of “defects” through the variable anharmonic coefficients h, , 
and IQ . This way of introducing “defects” has the analytic advantage of not 
complicating the frequency spectrum of the normal modes, but it increases the 
variety of normal-mode interactions [5]. It, of course, does not represent the usual 
defects in real solids. In fact the present method is intended to circumvent this 
complication while, at the same time, probing the role of the anharmonic terms in 
irreversible processes. 

The lattice is located between two thermal reservoirs which are separated by a 
distance (N - l)Z,, or less. If the distance is (N - l)l,, , as shown in Fig. 1, then the 

. . . 

x,=0 

FIG. 1. One-dimensional lattice. 

lattice just fits between the reservoirs with no applied pressure at temperature 
T = 0. In this case, x1 = 0 and xN = 0 corresponds to contact between the left 
and right particles and their respective reservoirs. To increase the contact between 
the reservoirs and the lattice, the case in which the reservoirs were moved inward 
slightly so that x, 3 0.5 and xN < -0.5 was also considered. It was assumed that 
when the end particles come into contact with the fixed reservoirs they experience 
an impulsive collision and come off with a velocity distribution 

f(u) = (I u I/T)e-“2/2T (v = it), (3) 

where u 2 0 (T = Tr) for particle 1, and v < 0 (2’ = TR) for particle N. This 
corresponds to Maxwellian reservoirs with particles of the same mass as the lattice 
particles. The factor u in (3) takes into account the fact that a slow reservoir particle 
is less likely to be at the wall when the lattice particle arrives there (the same effect 
as in molecular effusion). The mean value of T was taken to be 10-2, which 
corresponds to a physical temperature of roughly 300°K (see Appendix A). In 
order to obtain temperature gradients which are observable over the background 
statistical fluctuations, it was necessary to take 2(T, - TL)/(TR + TL) > 0.4. 
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Therefore the temperature differences were of the same order of magnitude as the 
mean temperature. However, within the statistical accuracy of the present study 
(~10 %), no consistent dependency of the coefficient of heat conductivity on the 
gradient was observed. 

The total dimensionless energy flux (instantaneous) in the lattice is given by [6] 

J(t) = -Nf1 ; (ff,+l + &){(Xi+1 - Xi) - h&+1 - xJ2 + K&i+1 - Xi)“>- (4) 
i=l 

This expression was used to evaluate the energy flux autocorrelation function for 
the equilibrium system. The harmonic approximation of J(t), namely 

N-l 1 

J"(f) = - c 3 C&+1 + axi+ - Xi), (5) 
i=l 

which is frequently used in theoretical investigations [I], [3], [6], [7], was also 
examined. In the cases studied, &(f) was not found to be the dominant part of 
J(t)-which casts considerable doubt on many theoretical treatments of the energy 
flux. The average heat flux, J, through the nonequilibrium lattice was determined 
directly from the time-averaged energy exchange at the two reservoirs. This was 
used to obtain the dimensionless coefficient of heat conductivity, KT , through 
Fourier’s law 

J = -KTVT (6) 

The temperature of each particle in the lattice is defined to be twice the time- 
averaged kinetic energy3 

Ti = ui2(t) (7) 

The internal temperature gradient (dimensionless) in (6) is determined by a fit of 
the values of Ti to a straight line. The internal gradient is always considerably less 
than the applied temperature gradient, (TR - TJIOO, because of large temperature 
differences between the lattice ends and the reservoirs. It should be also emphasized 
that (7) is simply a definition of Ti , and does not imply local equilibrium. It would 
be much better, but rather difficult, to relate the local temperature to energy 
(or velocity) distributions. What this relationship should be is, however, not entirely 
clear-the concept of local equilibrium may be too naive for a nonequilibrium 
lattice. 

s It might be mentioned that the ratio of the average potential energy to the average kinetic 
energy is approximately 0.75 when & = 10 and T = .Ol, so the time-averaged potential energy 
differs significantly from T/2. 
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3. COMPUTATIONAL FEATURES 

The problem was programmed in FORTRAN II except for the inner loop integration 
of the dynamical equations. This Runge-Kutta integration procedure was written 
in NICAP, the assembly language for the University of Illinois computer, ILLIAC II. 

It was found that the actual running time on ILLIAC II was almost exactly equal to 
the dimensionless time of the problem itself. 

The boundary interactions play an important role in the selection of the method 
of integration of the 2N equations of motion which derive from the dimensionless 
Hamiltonian (2): 

tii = Fi+l - Fi, 3i.i = vi 

where Fi 5 dxi - h,(d~~)~ + Q(Ax~)~ with dxi = xi - xiPl and the condition 
of free ends requires dxl = Ax,,, = 0. Each impulsive interaction with the 
reservoir erases the past history of the particle motion and necessitates a restart 
of the integration. In order to allow high interaction rates with the attendant 
better statistical behavior, the system is studied under a high pressure configuration 
with reservoir interactions every 10 to 20 iterations of the difference equations. 
Rather than mix integration schemes, a Runge-Kutta method was adopted for 
the entire problem with no multistep intermediate calculation. 

In deciding on the step size and the order of the method to be employed there 
is the usual compromise between accuracy and running time. A fifth order Runge- 
Kutta method due to Butcher has been shown [8] to have the best accuracy of a 
typical set of integration methods for a fixed computing time on this problem and 
in a suitable error range. A step size of 0.1 time units was chosen. It is by no means 
clear that this selection is optimal. The strategy adopted is a compromise of 
conflicting requirements. 

On the one hand, an important characteristic of the system under study is the 
possibility of performing an energy check by balancing the reservoir energy fluxes 
against the calculated energy resident in the lattice. The change in internal energy 
will be exactly accounted for by the external flux except for errors in the integration 
which are mainly truncation errors in our computations. Roundoff error is not 
significant because of the 13-significant-figure precision of the ILLIAC II computer 
used in this work. Thus, by maintaining high accuracy, the energy check can be 
used to detect possible machine errors. 

On the other hand, if we relax the requirement of high accuracy in the energy 
check and use a longer time step with perhaps a less accurate integration scheme the 
whole effect of truncation error could be compared with a physical experiment with 
leakages between the system and an external heat bath. As long as these leakages 
are small compared to the main fluxes in the system the steady-state configuration 
will not be sensibly direrent from the case of an isolated system. The statistical 
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errors which arise because of the small number of interactions with the reservoir 
per hour of computing time, about 2000 in our computations, can be reduced by 
increasing the time step. Since the statistics will improve roughly as the square 
root of the number of interactions or dynamical time, a twofold improvement in 
statistics will require a fourfold increase in the time step. Using a fifth-order method, 
this means an error term three orders of magnitude larger for a halving of the 
statistical error. The advantages of a small error term with a good energy check 
leads to the step size of 0.1 units selected. 

The number of interactions per unit of computing time can be increased by 
reducing the number of particles. No improvement is realized by this, however, 
since the lifetime of these pulses is shorter and we have fewer particle parameters to 
determine temperature gradients and other functionals. It would appear that the 
information to be obtained is a function of the computing time alone. 

A rough feeling for the computation involved can be had by observing that for 
100 particles we have 200 equations with 5 RungeKutta steps per equation. A 
single time step of 0.1 units takes about 0.1 set of computing time so each basic 
integration step takes 100 psec per particle including all overhead in the problem 
and in addition to the necessary function evaluation and steps in the integration 
itself. Again, since we are interested in statistical quantities, dramatic improvement 
on problems of this type must await the advent of new parallel computers of the 
JLLIAC IV &US. 

4. EQUILIBRIUM RESULTS 

To facilitate the discussion of the results in the remaining sections, it is useful 
to introduce some terminology and basic numerical values: 

N = 100; Ki = %Ai2 (Appendix A); Tav = g(T, + T,) = 0.01; 
“no defects” means Ai = h = 10; 
“defects” means that 15 % of the Xi have a value of 1.5X, 15 % have a 

value of 0.5X, and 70 % have the value of 10 (Appendix B); 
“pressure applied” refers to T = 0 and means that x1 >, 0.5, xN < -0.5; 
“no pressure applied” means that x1 > 0 and xN < 0; 
“force” (on each reservoir) equals the time-averaged momentum exchange 

between the reservoir and the end lattice particle; 
CFL and CFR is the collision frequency of the left and right particle 

with its respective reservoir; 
“Applied VT” = (TR - T,)/lOO; Internal VT is obtained from a fit of 

the Ti to a straight line. 

These values will be implied in all the following cases unless otherwise stated. The 
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FIG. 2. Displacement of particles (times three) in the harmonic lattice. 
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time averages were over various times, up to 40,000 set (dimensionless), which 
represents 400,000 integration steps. It should be noted that 40,000 seconds is the 
time it takes a sound wave to cross the harmonic lattice 400 times and roughly 
700 times in the anharmonic lattice. 

Some of the equilibrium properties of the harmonic and anharmonic lattice 
were determined, both for comparison with the non-equilibrium cases and because 
of their intrinsic importance. 

Typical examples of the equilibrium dynamics of the lattice between the thermal 
reservoirs (TR = T, = 10-Z) are shown in Figs. 2 and 3. These figures show the 
displacement (multiplied by three) of each of the one hundred particles as a function 
of time. Figure 2 illustrates the behavior of the harmonic lattice. Two features are 
notable in this figure. First, the lattice spends a considerable amount of time not 
in contact with the reservoirs (i.e., contracted in length), and tends to “slosh” 
back and forth between the two reservoirs. Secondly, the very energetic 
disturbances (which trace a line across the figure) have a velocity very near the 
expected value of 1.0 (one lattice spacing/set). However, when two of these dis- 
turbances interact, there is a delay in the propagation of approximately 10 set 
(indicated by a shift in the heavy lines where they intersect). Presumably this 
delay is due to the appearance of high Fourier components during the interaction, 
with a corresponding reduction in the group velocity. The effect of this delay is 
that the time required for a disturbance to cross a harmonic lattice is not equal to 
the length of the lattice divided by the sound velocity, but somewhat longer 
(depending on the number of such interactions). 

The situation in the case of an anharmonic lattice with defects, shown in Fig. 3, 
is quite different. The contraction of the lattice is sometimes quite large, but it 
lasts for a much shorter period of time. The large amplitude disturbances now cross 
the lattice with a velocity of 1.68 to 1.55. Not only is the velocity larger than in a 
harmonic lattice, but there is no longer any delay when two large-amplitude pulses 
intersect. Both of these results indicate that there has been a considerable change 
in the frequency vs wave length relationship (to the extent that this relationship is 
significant in the nonlinear case-e.g., it will be amplitude-dependent). The 
implication is that o(k) is more nearly linear in k, and has a larger initial slope 
than in the harmonic case. These conclusions also agree with previous theoretical 
studies of these lattices [5]. The situation is not simple, however, for in the case 
of the anharmonic lattice with no defects, the velocity of disturbances is 1.20 to 1.24, 
with large interaction delays (~10 set), and considerable contraction. The con- 
clusion is that the defects have a large effect on smoothing out the dynamics, and 
increasing the velocity of disturbances. 

The magnitude of the statistical fluctuations which occur, when shorter 
computations are used, is illustrated by the plot of Ti for the various particles 
(averaged over 8,000 set), shown in Fig. 4. It can be seen that the average tempera- 
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FIG. 3. Displacement of particles (times three) in an anharmonic lattice. 
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ture of the particles deviates from the applied temperature by only a few percent. 
Other significant results, which can be compared to the nonequilibrium values in 
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FIG. 4. Time-averaged kinetic energy of the particles in an equilibrium lattice. 

Section 5, are tabulated in Table 1. The force on the reservoirs fluctuates very 
little for different runs, whereas the collision frequencies and energy flux (which 
should be zero in the present case) exhibit modest fluctuations over shorter run 
times. These results are consistent with the assumption that the end lattice particle 
has a Maxwellian distribution. If the particle which strikes the reservoir has the 
distribution 

f(u) = (I u j/T’) e--zr”/2T’ 

as it approaches the reservoir, and the form (3) as it leaves the reservoir, then the 
average momentum exchange per collision is ($~)l/~ [(T’)‘lz + P2]. This should 
equal (force/W). The values in Table I yield (force/U) = 0.249 for the longer 

TABLE I 
f?QUILIBRIUM RESULTS 

Pressure 
Defects app&xl Furce x 102 J x I@ CFL CFR Run time 

Yes Yes 6.71 -0.12 0.270 0.270 WJO 
yes no 5.13 -0.75 0.210 0.204 4,~ 
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run, and 0.244 to 0.251 for the short runs. For T’ = T = 10A2, the theoretical 
value is (2.1r)112 x 10-l = 0.25. Obviously this excellent agreement is only a weak 
test of the Maxwellian character of the distribution function-nonetheless, it is 
of some interest. 

Because of the theoretical relationship between the energy flux autocorrelation 
function and the coefficient of heat conductivity [9], [lo], considerable effort was 
made to determine this function to a reasonable degree of accuracy. The normalized 
autocorrelation function is defined by 

A(7) = (J(T) J(O))/(P) = pI$ j%(t)+qt + T) qj; P(t) tit, (8) 
0 

where J(t) is given by (4). The numerical approximation used for (8) was 

A(T) N llfO 454 J(5n + TffO P(5n) 
TX=0 9&=0 

so the current was sampled every five seconds, for 55,400 set (T < 500). 
The result4 obtained for a lattice with defects and applied pressure is shown in 

Figure 5. The first minimum in Fig. 5, at roughly 65 set, is very different from 
the corresponding value of 100 set in the case of a harmonic lattice. In the latter 
case this first minimum is related to the time required for a sound wave to cross 
the system; and for shorter times A(T) has the very simple approximate form 

A(T) N 1 - 1.7(7/N) (0 < 7 B N) 

In the case of Fig. 5, the first minimum again corresponds roughly to the crossing 
time in the anharmonic lattice (as determined from Fig. 3). Moreover it is clear from 
Fig. 5 that the initial behavior of A(T) is not simply a linear decrease with time 

r 

FIG. 5. The normalized energy flux autocorrelation function. 

a Numerical values of A(T) are given in Appendix C. 
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but that it also contains a part with an exponential time behavior. The 
hope would be that one could separate the boundary effect producing the linear 
decrease in A(T) from the intrinsic relaxation-time effect. Geometrically this would 
mean that A(T) should initially behave in an exponential fashion in a coordinate 
system which is suitably rotated with respect to the one in Fig. 5. This simple 
expectation proves to be wrong. Instead, it is found that A(T) behaves exponentially 
only if the coordinates are both rotated and shifted by a suitable amount. The 
significance of this shift in the coordinates is not clear at present. In the transformed 
coordinates the autocorrelation curves is given by 

A’(T)) = .55e-.014” (0 < T' < 60) (9) 

if the transformed axis have the same scale as in Fig. 5. If the axis had only been 
rotated (by nearly &), then the coefficient in (9) would be 0.68 rather than 0.55. 
When (9) is expressed in terms of the original coordinates, it is found that A(T) 
satisfies the implicit equation 

A(T) N 0.176 - 0.01077 + 0.824 exp{-JO9337 + l.O5(A(7) - I)} 

(0 < T S 60). 

These results do not seem to give any conclusive answer to the value of the relaxa- 
tion time for the energy flux correlation (if it exists). The relaxation time from (9), 
namely (.014)-l N 70 set, may not be significant because of the appreciable shift 
between the coordinates. However, it represents the only value which can be assign- 
ed at present. 

The energy flux autocorrelation function was also determined using the harmonic 
approximation for the energy flux, Eq. (5). While the normalized autocorrelation 
function bears some resemblence to Fig. 5, the normalization constants were very 
different in the two cases. Specifically it was found that 

11,080 11.080 

c J2(5n) = 160.0; c JH2(5n) = 30.8. (10) 
ndl ?kO 

The large difference in these values shows that the harmonic current only represents 
roughly one half of the total energy flux in the anharmonic lattice. It would appear, 
therefore, that the frequently used [l], [3], [6], [7] harmonic energy flux bears 
little relationship to the actual energy flux in real lattices that have large 
anharmonicities. 

According to a number of theoretical investigations [9], the coefficient of heat 
conductivity and the energy AU autocorrelation function should be related by the 
expression 

1 -- 
KT - NT2 s m <J(T) J(O)> d-7 o 
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where the factor N is essentially the dimensionless length of the lattice. While 
the question of the size of the lattice does not seem to have been given any particular 
attention, it is clear that (11) should be interpreted to hold in the “thermodynamic 
limit,” N + co, in order to ensure KT is an intensive property of the system. While 
this is rather trival from a theoretical point of view, it is important in the present 
context, and probably in real solids. The difficulty, in the extreme, is illustrated by 
considering afinite, but arbitrarily large, harmonic lattice. In this case the integral 
on the right side of (11) can be shown to vanish-the energy flux reverses its sign 
within the time required for a sound wave to cross the lattice. If (11) applied to this 
case, then one would have KT = O-which is quite different from the usual state- 
ment [I] that KT --f co in the harmonic limit. Note that taking the thermodynamic 
limit after the integral does not change these results. On the other hand, if one 
begins with an infinite lattice (e.g., using periodic boundary conditions), then J(t) 
is rigorously a constant for a harmonic lattice, and the integral in (11) is infinite. 
It is clear from this that some care must be taken in applying (11) to finite lattices 
(such as in the present case, or in real experiments). As can be seen from Fig. 5, 
there remains a strong tendency for the integral in (11) to vanish, even in the case of 
strong anharmonicity. This tendency is again a result of disturbances (or energy) 
being reflected at the ends of the lattice. Such a tendency will persist as long as 
the correlation time is longer than the time required for a sound wave to cross the 
system. Moreover, the correlation time should presumably be of the same order as 
the lifetime of sound waves (phonons). Since sound waves do, in fact, easily survive 
while crossing real (experimental size) lattices, the correlation time can be expected 
to be large compared to this crossing time. Thus the results shown in Fig. 5 
should represent, fairly realistically, the behavior of the autocorrelation function 
in real finite solids. Since a very large amount of cancellation still occurs in the 
integral in (II), it seems very doubtful that the theoretical relationship (11) can 
be expected to apply in many real situations. It will be shown later that (11) 
apparently does not apply to the present system. 

5. NONEQUILIBRIUM RESULTS 

When the temperatures of the two reservoirs are made different from one another, 
a systematic energy exchange between the ends of the lattice and their respective 
reservoirs is observed. From these results, it is easy to obtain the time-averaged 
energy flux, .I, through the lattice. The more difficult problem is to obtain a measur- 
able internal temperature gradient. The gradient must be larger than the statistical 
fluctuations (e.g., shown in Fig. 4), which either requires long run times, large 
applied temperature differences, and/or large anharmonic coefhcients with defects. 
A number of cases involving increasing anharmonicities were investigated to 
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determine the weakest anharmonicity which would yield an observable temperature 
gradient. 

In the case of a harmonic lattice, illustrated in Fig. 6, the time-averaged kinetic 
energy of the lattice particles exhibit a rather remarkable behavior. Figure 6 is for 
a run of 4,000 set, with an applied pressure, and (TR - TL) = 6.67 x 1O-s. The 
applied temperature gradient is indicated by the inclined straight line in the figure. 
The average flux through the system is J = -0.25. x 10-3, with a force of .0174, 
and CFR = .064, CFL = .079 (see Tables I-III for comparisons). The most 
remarkable feature of Fig. 6 is the high degree of symmetry in the time-averaged 
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FIG. 6. The temperature of the particles in a nonequilibtium harmonic lattice. 

kinetic energies of the particles-despite nearly 600 interactions with asymmetric 
reservoirs. Moreover, the average temperature of the lattice is significantly lower 
than +(TR + TL). Other similar computations indicate that these features are real 
and not a statsistical accident. At present there appears to be no theory5 to explain 
these features of the nonequilibrium finite harmonic lattice. The obvious dominance 
of a few modes in Fig. 6 may, however, be due to the “sloshing” effect noted in 
Fig. 1. The symmetry is probably due to the fact that pulses, traveling in either 

4 A recent study of a finite nonequilibrium harmonic lattice has been made by Rieder, 
Lebowitz, and Lieb [Ii]. In their model the end particles are immersed in thermal reservoirs 
and have a collision frequency which is independent of the lattice dynamics. Moreover, they 
take the same collision frequency at both reservoirs. These conditions are quite different from 
the present model in which the reservoir collisions are one-sided and their frequency depends 
on the lattice dynamics (e.g., columns six and seven in Tables II, III). Presumably these differences 
are responsible for the considerable difference between their result and Fig. 6. 
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direction, are transmitted without alteration. Thus the time average energy of all 
particles would presumably be the same if it were not for this “sloshing” effect. 
The only predictable feature of Fig. 6 is that there is no uniform temperature 
gradient inside the lattice. Obviously Fourier’s law does not apply to such a system. 

When a weak anharmonicity (Ai = 1) is introduced in this lattice, the plot of 
Ti remained very similar to the one for the harmonic lattice. The principal differ- 
ence is that the average temperature of the lattice is closer to the average applied 
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FIO. 7. The temperature in an anharmonic lattice with defects. 
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FIG. 8. The same conditions as in Fig. 7, except the lattice has no defects. 



222 JACKSON, PASTA, AND WATERS 

temperature than in Fig. 6. Also 3 = -.35 x 10-3, force = .0262, CFL = .119, 
and CFR = .098. Despite the anharmonicity, no internal temperature gradient 
is observed-presumably because “the phonon mean-free-path is larger than the 
lattice.” 

Moderate values of the coupling constants (e.g., hi = 5) produced internal 
temperature gradients which are only marginally above the statistical fluctuations 
(for the available run times), so the remaining computations were done for strong 
anharmonicities (hi = 10). Actually these “strong” anharmonicities are reasonably 
realistic in terms of real solids. The resulting temperature gradients when 
TR - T, = 6.67 x 1O-3 are illustrated in Figs. 7 and 8 (both obtained from 
24,000 second runs). The steeper straight line in these figures again refers to the 
applied gradient. The only difference between the two cases is that the lattice in 
Fig. 7 contains defects, whereas there are no defects in the case of Fig. 8. The 
resulting differences in the internal temperature gradient can be clearly seen. The 
increased coupling between the normal modes (phonons), produced by the defects, 
produces the expected irreversible effects. In an attempt to apply smaller temper- 
ature gradients, it was necessary to use longer run times (40,000 set) in order to 
obtain reliable results. An example of such a computation is shown in Fig. 9. 
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FIG. 9. The temperature in an anharmonic lattice with a smaller applied gradient. 

In this case TR - T, = 4 x 1O-3 and the lattice has no defects. While the internal 
gradient is small, the statistical fluctuations are also quite small. 

The results from the above runs, and several other cases, are listed in Table II. 
These are all for N = 100, X = 10, Tav = 1O-2, and applied pressure. The last 
entry in Table II corresponds to a case with a weak quartic coupling, which will 
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TABLE II 

NONEQUILIBRIUM RESULTS 

Applied Internal 
Defects VT x lo6 VT x lo5 -f x lo4 Force x 1Oa CFL CFR r 

Yes 6.67 2.30 6.23 6.71 0.313 0.245 27.0 
yes 4.00 1.27 3.66 6.73 0.294 0.254 28.8 
no 10.00 2.08 11.53 6.87 0.352 0.244 55.5 
II0 6.67 1.48 7.53 6.90 0.316 0.251 51.0 
no 4.00 0.853 4.82 6.92 0.299 0.263 56.0 

IlO 6.67 2.58 8.19 8.80 0.415 0.321 31.7 

be discussed shortly. Since the internal temperature gradients in Table II are 
known to only approximately 10 % accuracy, the resulting values of the coefficient 
of thermal conductivity are independent of the gradient to within this accuracy. 
Also, as expected, the defects lower the value of KT considerably. Table II also 
shows that the force on the reservoirs is essentially independent of the applied 
gradient. On the other hand, the ratio CFLICFR appears to be a function of only 
the applied gradient (see also Table III), and not of the defects or applied pressure. 
From the collision frequencies, force, and energy flux, one can determine the 
average momentum and energy transferred per collision at both the left and right 
reservoirs. An explanation for these values is, unfortunately, lacking at present. 

In order to separate the cubic and quartic effects, one case was run for 
K = (l/4) h2, rather than K = (2/3) h2. The results of this case is given in the last 
entry in Table II. The value of KT is considerably lowered by this change, primarily 
due to a large change in the internal gradient. Moreover the force on the reservoirs 
is increased from .0697 to .088, whereas the ratio CFLICFR is essentially unaltered. 
The present value for the quartic coupling constant was selected on the grounds 
that it is the smallest value which does not lead to two minima in the interparticle 
potential, *r” - (l/3) hr3 + (l/4) Kr4. 

Another method for differentiating between the cubic and quartic terms is to 
allow the system to occupy a different volume. The result in Table XII are for a 
system with defects but no applied pressure (at T = 0), and may be compared with 
the first two entries in Table II. The increased volume of the system effectively 
reduces the anharmonicity, resulting in an increased value of K~. Both the force 
and the collision frequencies are decreased because of the weaker contact with the 
reservoirs. 

The interesting question arises as to whether the above values of KT can be 

58 1 /z/3-2 
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TABLE III 

No PRENJRE CASE 

Applied Internal 

VT x 106 VT x 106 -1 x 104 Force x lO* CFL CFR KT 

10.00 2.45 7.83 5.01 0.259 0.177 32.0 

6.67 1.40 4.50 5.02 0.234 0.183 32.2 

shown to be related to the equilibrium energy flux autocorrelation function by 
Eq. (11). If this relationship is valid, then it can also be written in the form 

where A(T) is the normalized autocorrelation function, (8). Using the value in (lo), 
we obtain (J2) = 160/l 1,080. Using the observed value of KT = 27 (first entry in 
Table II), (12) would imply that 

I O” A(T) dr F 19.4. 
0 

On the other hand, as already noted, the integral of A(T) as determined from Fig. 5 
is apparently very nearly zero. In any case, over the interval 0 < T  < 500, the 
integral of A(T), determined from Fig. 5, is at least an order of magnitude smaller 
than required by (13). It seems very unlikely that the difference can be accounted 
for by the remaining integral of A(T) for T  > 500. From these results it appears 
that the fundamental relationship (11) does not hold for the present finite lattice. 

Histograms of the velocities of the end particles, at the time of impact with the 
reservoir, were also obtained. Because of the large statistical fluctuations, these did 
not accurately determine the nature of the distributions, particularly for high 
energies. Thus, while the distributions frequently had a similarity to the Maxwellian 
form, f(v) = (l/T’) ve-v’/2T’, an elementary check of the data in Tables II and III 
indicates that this is not exactly the case. If the end particles have a distribution of 
this form, approaching the reservoirs, the average momentum exchange with the 
reservoir per collision is (+r)l12 [(Y)li2 + W2], whereas the average energy 
exchange per collision is T’ - T. Here, T’ refers to the end particle and T to the 
reservoir. These quantities should respectively equal (force/CF) and @/CF). 
Using the values in Tables II and III it is generally found that different values of 
T’ must be used in order to satisfy both of these conditions. This implies that the 
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distribution function for the end particle as it approaches the reservoir is not 
Maxwellian. Even when a single value of T' is found to suffice, the time-averaged 
kinetic energy of the end particle is generally not equal to $(T' + T). The values 
of this average kinetic energy of the end particles are (in the order of entries in 
Tables II and III) 

Tl .85 .87 230 .87 
------- 

TN 
I 1.19 1.13 1.21 j 1.13 

No systematic method of correlating these various quantities has yet been found. 

6. CONCLUSION 

The present study has not only obtained a number of results which may be 
compared with existing theories, but it has also indicated several limitations of 
these theories and the present approach. The principal limitation of the present 
method arises from available computation time (or, what is the same, lattice size). 
While the present lattice size does not appear to significantly affect the coefficient 
of thermal conductivity, it does have a strong influence on the form of the energy 
flux autocorrelation function. The comparison of this function with the coefficient 
of thermal conductivity must await a theory which explicitly takes into account the 
finite size of the lattice. Another limitation of the present approach concerns the 
rather poor statistics, particularly as regards the velocity distribution function of 
the lattice particles. It would be of considerable interest, for example, to know this 
distribution for various locations in the lattice. At present there appears to be no 
adequate theory for such nonequilibrium distributions. Despite these limitations, 
sufficient information has been obtained for comparison with present theories, and 
possibly as a guide for as yet undeveloped theories (e.g., for a finite harmonic 
lattice between two thermal reservoirs). 

APPENDIX A 

As a representative system take 

velocity of sound, us = l,,(p/m)l/2 = 3 x IO-5 cm/set; 

equilibrium separation, /,, = 3 x 10-s cm; 

mass, m = 30 AMU N 5 x 1O-28 g. 
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Then one dimensionless unit corresponds to 

energy: ~1~~ = mug2 = 4.5 x lo-l2 ergs. 

time: (m/p)l’” = Io/vs = IO-l3 sec. 

Force: & = 1.5 x 1O-4 dynes. 

Temperature: mvB2/k = 3.25 x lo4 “K, where k is Boltzmann’s constant. 

The dimensional form of Fourier’s law is 

$ (,,2”‘““,,,) = -kW 

where the tilde represents a dimensional quantity. The energy flux per linear chain 
(for simple cubic lattice) is 

so the corresponding dimensionless energy flux J = ~/(pl,,2)(p/m)1/2 satisfies 

J = -K=VT, 

where KT = r?,lo2/kv, . Therefore 

2 
= 3 x 10-9&P ( 

ergs 
cm - set 1 = 6.67 x 10-lol$ ( ,,“‘_““,, ). 

For a typical value of I&T = 28 W/cm, this yields KTT = .187. 
A pressure of 1 atmosphere, corresponds to an average force per linear chain of 

9 x IO-lo dynes, or a dimensionless force of 6 x 10-6. Thus a dimensionless 
force of .06 corresponds to 104-atmospheres pressure. 

APPENDIX B 

For possible future theoretical investigations, we list the fifteen nonlinear 
coefficients with hi = 15 and hi = 5 in the case of defects. They are respectively 
i = 4, 8, 9, 13, 23, 30, 37, 44, 51, 57, 63, 64, 73, 91, 94 and i = 3, 11, 15, 20, 25, 
29, 34, 36,47, 60, 75, 77, 82, 84,96, 98. 
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APPENDIX C 

The numerical value of the normalized autocorrelation function A(%), for 
increasing integer values of n, is 1.000, 0.696, 0.520, 0.390, 0.280, 0.190, .015, 
-.054, -.127, -.188, -.250, -.314, -.356, --.338, -.300, --.250, -.191, 
-.149, -.109, -.071, -.033, +.019, .062, .097, .143, .180, .202, .213, .204, .185 
(for t = 150). 
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